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An accelerating liquid drop, under the action of surface tension, is shown to be 
unstable to small disturbances above a first critical value of the Bond number. 
Both numerical and second-order asymptotic methods are employed in order to 
characterize the normal-mode response and the neutral-stable modes at larger 
values of the Bond number. The transient response of an initially spherical drop 
that is accelerated by the flow of an external gas is studied as an initial-value 
problem. A unified theory, that includes acceleration as well as aerodynamic 
effects, is presented in order to account for the complete dynamic range of Weber 
and Bond numbers. The results are compared with experimental observations 
that range from continuous vibration to irreversible aerodynamic distortion and 
unstable shattering. 

1. Introduction 
The purpose of this study is to provide a unified theory for the breakup of 

liquid drops that are accelerated by virtue of a surrounding gasdynamic flow field. 
The mechanism of droplet breakup is relevant to many physical processes. We 
cite as an example the erosion of supersonic aircraft surfaces by rain, where the 
size and shape of the drops at impact is determined by their transient response to 
the shock layer. Modern research into the mechanisms of droplet breakup has 
been in large part experimental, beginning perhaps with the work of Volynski 
(1948) and Hinze (1948), (1955). Their results, along with the more recent 
experimental results of Engle (1958), Hanson, Domich & Adams (1963), Ander- 
son & Wolfe (1965), Reinecke & Waldman (1970) and Simpkins (1971), indicate 
heretofore unrelated regimes of dynamic response. This is because, even in the 
absence of viscous effects, the droplet is subject not only to deformation arising 
from anon-uniform surface pressure distribution, but to the possible simultaneous 
effect of instability due to acceleration. Nonetheless, a theory has been developed 
that serves t o  unify many of the experimental results made over the past several 
years and, in addition, reveals several features which have not been delineated 
previously. Hopefully, the latter results will provide a useful guide to more 
detailed experimentation. 
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Because of the rather complicated nature of this problem, the results will be 
presented in several self-contained parts. I n  the first part of our study, we report 
some basic results concerning the stability of an accelerating liquid sphere. 
These results, which are essential to a clear understanding of the remaining parts 
of this study, are developed from the relevant eigenvalue problem. In  particular, 
the value of a lowest critical Bond number, below which the drop is stable to all 
small disturbances, is obtained by both numerical and higher order asymptotic 
methods. Further, the response to a initial disturbance is characterizedin terms of 
the normal modes as being either stable, quasi-stable, or unstable. 

Once the results of the eigenvalue problem have been established, we shall 
treat the initial-value problem with a view to describing the combined effects 
of aerodynamic as well as acceleration forces. We shall show that, below the lowest 
critical Bond number and above a critical value of the Weber number, the drop 
will break up owing to the effect of aerodynamic forces alone. Above the lowest 
critical Bond number, both aerodynamic and acceleration forces act t o  break up 
the drop, and a model will be presented to account for the combined effect of 
aerodynamic distortion and instability. We begin our study by considering the 
stability of an accelerating liquid drop. 

2. The eigenvalue problem 
The centre of mass of a liquid drop is assumed to move with constant accelera- 

tion g = gk. (The use of bars is intended to denote dimensional quantities.) We 
consider a system of spherical co-ordinates ( p ,  8, #), with associated unit vectors 
(e?, e,, e4), which has its origin fixed at the centre of mass and is oriented so that 
the unit vector, k = e, cos 6' - e, sin 0, associated with the polar axis is pointed in 
the direction of the acceleration. The fluid velocity and related droplet con- 
figuration are symmetric with respect to the latter axis, i.e. a[aq5 = 0. During the 
process of deformation, the liquid, which is assumed to be incompressible and 
invisid, undergoes potential motion in which the mass of the drop is preserved 
and the nonlinear terms in the momentum and kinematic equations are negligible. 
The droplet configuration is assumed to be, a t  all values of the time t, slightly 
deformed from the unperturbed spherical shape, ? = ?,. The formulation of the 
problem, as stated above, serves to define a surface pressure distribution on 
the exterior of the drop in terms of the internal hydrodynamic pressure and 
the surface tension stress (body forces arising from magnetic effects or gravity are 
not considered). Our aim is to establish certain results by studying the eigenvalue 
problem which derives from the above formulation. The connexion between 
these results, and the response of an initially spherical liquid drop to an external 
surface pressure distribution of arbitrary form, will be discussed subsequently. 
However, an understanding of the latter problem is greatly enhanced by first 
studying the eigenvalue problem. We therefore proceed to consider the stability 
of a nearly spherical liquid droplet undergoing constant acceleration. 

The momentum equation 
- 

( l a )  
- du 
PlZ = -V%-P&, 
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where is,, and u are the liquid density, pressure and velocity, respectively, is 
integrated under the assumption that there exists a velocity potential $ such that 

u = vg, 0 2 5  = 0. ( I b )  

The surface of the drop, FS(0, f), is described by the function F(Ts, 0, f) : 

F = pS - pa + r(e, i)l= 0, 

which is subject to the kinematic condition 

aF/ai+u.VF = 0. 

In  addition, we require that the volume of the drop be conserved, and that the 
origin of the co-ordinate system remain fixed at  the centre of mass. These con- 
straints are expressed for small T/r, by 

where ds is the differential surface area. 
At the surface of the drop, T = ?,,the liquid pressure gl is equivalent to the sum 

of an externally applied pressure Pe, and the interfacial pressure due to surface 
tension PT, 

In addition, we have by Newton’s law 

= ge f PT. ( 2 c )  

where n is an outward unit vector normal to the sur€ace, and M is the constant 
mass of the drop. 

We proceed to define a perturbation parameter e which corresponds to the 
amplitude of the surface disturbance, and in terms of which 

The appropriate linearized equations are derived in the appendix, equations 
(A i)-(A 18). We introduce dimensionless quantities appropriate to the accelera- 
tion effect, namely, 

(4) I r = p /po ,  q = ./I. q = - - - 
0 ,  s TSITO - I + %  

t = i( j /ra)4,  + = $ / ( r t g + ) ,  BO = gplr;/3,  

where 
positive. The governing equations in dimensionless form are thus 

is the surface tension coefficient and Bo, the Bond number, is real and 
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where v z p  = 0 (T  < l ) ,  
with the restriction 

p d s  = $1) cos 8ds = 0. s s  
( 5 4  

( 5 4  

A normal modes 

We seek solutions to  the above set of equations in the form 

@)(8, t )  = exp (iPt}F(B), 
qW(r, 8, t )  = exp {ipt} @(r,  B),  

( 6 4  

(6b)  

where a normal mode is expressed by 
m 

P(6)  = A,P,(cos6), 
n=2 

(7b)  

(7 4 

rn 

n=2 n qr, e)  = ip  - A,P, (~~s  01, 

A ,  = A ,  = 0. 

We note that (6) and (7) satisfy ( 5  b, c) identically. Furthermore, (7c) satisfies the 
constraints expressed by ( 5 4 .  Substitution of ( 6 )  and ( 7 )  into (5a ,  b )  gives 

1 “ A  m 
- p 2 C ” P , + X A , P P  - - -Z(n-  1 )  (n+2)A,Pn-~exp{- i~ t}P, , (8a)  

2 n  2 n -  Bo 

= -expiptjo“ P sm8 . (1 X A  P ,) d8 = -+A2exp{ipt}. (8b) 

The second term of (8a) may be written as 

under the restriction A,  = 0. We define the eigenvalue 

in terms of which (8a)  becomes 
h = pz, 

for n = 2 , 3 , 4 ,  ..., with A, = 0. It is important to note that the perturbed 
external surface pressure distribution Pi1), which gave rise to the term involving 
AzP, in (8 ) ,  served to  annihilate the only other term, (9), involving P,. Had the 
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pressure perturbation been set to zero, we would have obtained the result A ,  = 0, 
which, in combination with the requirement A ,  = 0 and the difference equation 
(lo), would yield the self-consistent trivial solution 

A ,  = 7jlcu = 0. 

Further insight into the normal mode expansion may be gained by considering 
(A 15) in the limit g + O .  In  this case, (5a) reduces to 

It may be verified by direct substitution into (1 1 a)  and ( 5  c, d )  that the normal 
modes for Bo < 1 are 

( l i b )  

~ ( l )  = A,exp(i~,t}Pn(cos8), 

rn 
r$(l) = ipn A ,  - exp {ip, t }  P,( cos 6), 

n 

where 

Thus, in the case of free vibrations which are dominated by the effects of surface 
tension, the normal modes are expressed simply in terms of zonal harmonics. 
The characteristic frequency for such vibrations may also be recovered from 
( l o b ) ,  i.e. h -+pi as B o a  0. However, when surface tension and acceleration 
effects are of the same order, the normal modes are not the zonal harmonics and 
the formulation (6)-(10) is required. In the following sections we address our- 
selves to the solutions of (10). 

3.  The eigenvalues and neutral-stable modes 
In  general, we seek the eigenvalues h of the difference equation (10) for positive 

real values of the Bond number Bo. Of particular interest is the infinite set of 
'critical' Bondnumbers (Bo)~ ,  each of which give rise to a zero eigenvalue h = 0, 
referred t o  as a state of neutral stability. The associated eigenfunctions will be 
referred to as neutral-stable modes. The eigenvalue problem has been solved both 
by numerical and asymptotic methods. First, the eigenvalues of the difference 
equation (10) were found numerically, for given values of Bo, by truncating the 
coefficients above A, for successively larger values of N ,  until the lower eigen- 
values had converged. The mathematical justification for this procedure, as well 
as proofs that the eigenvalues h and critical Bond numbers ( B o ) ~  are real, may be 
found in Bell Laboratories Memorandum 71-1634-5. In  order to check the 
numerical computation of the eigenvalues and to gain insight into the nature of 
the eigenfunctions, an asymptotic approximation to the critical Bond numbers 
and the corresponding neutral-stable modes has been obtained. The mathematical 
technique is detailed in Harper, Grube & Chang (1971); our aim here is to convey 
the physical meaning of the results. 
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For a given value of the Bond number, the corresponding infinite set of eigen- 
values fall into one or more of the three distinguished states: 

h = pz > 0 

h = p2 = 0 

h = pz < 0 

(stable oscillation), 

(neutral stability, critical Bond numbers), 

(unstable growth). 

The eigenvalues are bounded from below so that the number of negative A, or 
unstable modes, is finite while the number of positive A ,  or stable modes, is 
infinite. As the value of Bo increases, an increasing number of negative h values 
occur. I n  particular, each time the increasing value of Bo exceeds a critical value 
( B o ) ~ ,  another unstable mode appears. When the Bond number corresponds to a 
critical value ( B o ) ~ ,  there are i - 1 unstable normal modes, one neutral-stable 
mode, the ith, and an infinite number of stable normal modes. Of particular 
interest is the value of the lowest critical Bond number 

(Bo), = 11-22, 

below which the drop is 'absolutely stable ', i.e. stable to disturbances of arbitrary 
form. Such a circumstance obtains, as in a capillary tube, because geometric 
constraints limit the wavelength of the lowest disturbance mode. 

The asymptotic approximation to the neutral-stable states was initiated by 
considering a second-order JWKB approximation to the steady-state version of 
(5) €or large values of Bo. The latter approximation manifests a turning point at 
8 = &r and singular points at 0 = 0, n-. The construction is completed by matching 
the JWKB approximation t o  boundary-layer approximations at the singular 
points, thereby determining the critical Bond numbers. The eigenfunctions, or 
neutral-stable modes consist of three-dimensional ring-like waves about the 
polar axis on the hemispherical surface, facing away from the direction of 
acceleration, and connected at the turning point to a smooth surface on the 
opposite hemispherical face. Near the polar axes, where the drop appears locally 
flat, the three-dimensional wave structure merges into a two-dimensional pattern 
with cylindrical symmetry. The equation for the critical Bond numbers is 

(i + +)n + [(i + &)'nZ- 8.914 
2.4 

( B o ) ~  = 

where the constant 8.9 represents a second-order correction. We note that the 
second-order correction, in conjunction with the definition o f B o  as a real number, 
serves to initialize the index i a t  1, thereby defining a lowest critical Bond 
number. Table 1 compares the first- and second-order approximations t o  the 
critical Bond numbers with the values obtained numerically. The second-order 
correction provides a significant adjustment a t  the lower modes and tends to  
confirm the numerical computations. Figure I displays the lst,  5th and 9th 
neutral-stable modes obtained from the JWKB approximation. 

For a given value of the Bond number, the eigenvalues and associated normal 
modes approach, for large values of A, the form of (11) .  Table 2 compares the 
eigenvalues A,, computed numerically from (lo), with values from (1 I c) at a, 
Bond number Bo = 20. The plausibility of such behaviour rests with the fact that, 
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(B0),=203 ( B O ) ~  = 6 15 

FIGURE 1. The neutral-stable modes of an accelerating liquid sphere. 

First-order Second-order 
asymptotic asymptotic 

Mode approximation approximation Numerical 
number i for large B o  for large Bo calculation 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

15.47 
42.70 
84.22 

139.2 
208.0 
290.5 
386.7 
496.7 
620.5 
758.0 

12.19 
39.84 
81.13 

136.2 
204.9 
287.5 
383.7 
493.8 
617.5 
755.1 

11-22 
38.36 
79.45 

134.4 
203.0 
285.6 
381.7 
491.7 
615.4 
752.9 

TABLE 1. The first ten critical Bond numbers (Bo), 

n 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Numerical coin- 
putation, equation A, = /?: = 

(10) n(n-1) (n+2)/Bo 

- 0.72 0.40 
1.21 1-50 
3.54 3.60 
6.97 7.00 

11-98 12-00 
18.89 18.90 
27.99 28.00 
39.59 39.60 
53.99 54-00 
71.49 71.50 
92.39 92.40 

116.99 117.00 
145-60 145.60 
178.50 178.50 
216.00 216.00 
258.40 258.40 
306.00 306.00 
359.10 359.10 
418.00 418.00 

TABLE 2. The first twenty eigenvalues A, for B o  = 20 
- 
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for large wavenumbers n, the effects of surface tension are increased owing to 
the increased curvature, or, in terms of (5a ) ,  

p = O ( l ) ,  L p  = O(n2). ( 1 4 4  

Moreover, the associated high frequency of oscillation increases the inertia 
effect, or, in terms of (5a ) ,  . I .  

= O(1) and - - 

Thus, in the first approximation, the effects of acceleration are negligible and 
( 5 a )  reduces to ( l l a ) .  

When the Bond number exceeds the lowest critical value, the drop is unstable 
to an initial disturbance of arbitrary form. However, the drop is ‘conditionally 
stable’ to initial disturbances of a particular form. For example, if Bo = 400 
(see table 1)) the first seven normal modes are unstable. Under the condition that 
the initial disturbance was composed only of the higher, stable modes, the drop 
response would be stable. This characterization is important to the understanding 
of the initial-value problem, where the initial disturbance is most easily treated as 
an expansion in zonal harmonics. If the initial disturbance is a zonal harmonic of 
rather high order, then it; is almost, but not exactly, a stable normal mode. 
However, such a disturbance will contain, as a component, an unstable normal 
mode of very small amplitude. In  such a case we term the response ‘ quasi-stable ’ 
because only after a sufficiently long period of time will the instability be 
manifest. 

The initial-value problem of determining the change in droplet shape with time 
is, in principle, solvable by means of a known set of eigenvalues and associated 
normal modes for each given value of the Bond number. However, such an 
approach would prove extremely difficult. Moreover, application of the results to 
the problem of an arbitrary external aerodynamic pressure distribution requires 
a t  least closed-form approximations, if not an exact solution. For these reasons 
the initial-value problem has been treated in terms of asymptotic expansions for 
small values of the time and for large wavenumber n. However, the results con- 
cerning the critical Bond number, absolute stability, and quasi-stable response, 
developed from the eigenvalue problem, will prove extremely important to an 
understanding of the initial-value problem. 

4. The initial-value problem 
I n  § 3 it was pointed out that the rate of unstable growth can be quite small if 

the Bond number is not sufficiently large, and such response was termed quasi- 
stable. The concept of the relative rate of unstable growth is important because, 
above a critical value of the Weber number, aerodynamic forces also act to 
deform the drop continuously and irreversibly. In  order to make these concepts 
precise, we consider the transient response of ail initially spherical drop that is 
suddenly accelerated by the flow of an external gas. This initial-value problem is 
appropriate, for example, to the interaction between a raindrop and the shock 
layer about a supersonic aircraft. 
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We begin by describing the results of an iterative procedure for calculating the 
response to an initial deformation in the form of a zonal harmonic. These results 
demonstrate the effect of Bond number and wavenumber on the unstable growth 
that is manifest on the windward face of the drop. We then obtain a closed-form 
asymptotic approximation, for large orders of the initial zonal harmonic, that is in 
excellent agreement with the results of iteration. The asymptotic solution 
provides for the expansion, in zonal harmonics, of an arbitrary initial distortion 
from the spherical shape. The initial distortion is then characterized in terms of the 
aerodynamic effect, which acts on a time scale which is of higher order than the 
time scale appropriate to the acceleration effect. The aerodynamic effect is to  
distort the drop algebraically in time, when the Weber number exceeds a critical 
value. An estimate of this critical value, which is based on a nonlinear analysis 
and which agrees favourably with experimental observations, reveals that all 
unstable (exponential) growth is accompanied by algebraic aerodynamic 
deformation. A composite expansion is presented which describes the selective 
unstable amplification, due to acceleration, of certain modes of the initial 
aerodynamic distortion. When the Bond number exceeds the so-called quasi- 
stable regime Bo M lo5, this expansion displays an initial aerodynamic effect 
followed by an unstable shattering from the windward surface, which is in accord 
with the most recent observations of droplet breakup. 

An iterative procedure 

We construct a sequence of approximate solutions to (5a-d)  by iteration, subject 
to the initial conditions 

(15) I $yr, ,g,o) = +hi) = 0, 

r(1’(8, 0) = ?hi) = ARPN. 
The construction, which after ith iterations leads to the form 

N+4 

N - @ 2  
rp) = ~ ; ( t )  P,(COS el, 

proceeds as follows. 
From (5 a) we obtain 

where 
= 0 ,  if N > 2 ,  

- -$, if N = 2 ,  

which may be integrated directly. The function that satisfies (5c) is thus 

+ ( N - 1 ) ( N + 2 ) r ~ ~ N ]  Bo ( N  > 2), (18) 

and application of (5 b) yields the first iterate 
.. 

and application of (5 b) yields the first iterate 

p N ] ]  ( N  > 2)* (I9) 
N ( N - l ) ( N + 2 )  

Bo + 
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t = O  r = O  

~ o = 1 0 3  Bo= lo6 

FIGURE 2 .  The effect of acceleration for an initial wavenumber of 5. 

The second approximation is obtained by repeating the process. Furthermore, 
because (5a -d )  are linear, each iteration reproduces its predecessor with a cor- 
rection involving the next highest even power of t ,  and the last correction is 
obtained directly from the previous one by iteration. The result is an asymptotic 
expansion in even powers of the time. It is apparent that the initial state PN 
produces a response involving all the zonal harmonics P,(n 2 2); the two lowest 
harmonics Po and PI are not generated because of the presence of the factor %? in 
(17a), and this fact serves to satisfy the constraint (54. 

The primary concern in this part of our study is to characterize the unstable 
response. From our study of the eigenvalue problem we concluded that, when the 
Bond number exceeds the lowest critical value 11.2, an initial disturbance in the 
form of a zonal harmonic P, is unstable, because such a disturbance contains 
unstable normal modes as components. However, as was pointed out, for a given 
value of the Bond number zonal harmonics of sufficiently higher order are very 
nearly stable normal modes. In  the case of such initial states, unstable behaviour 
is only manifest after a sufficiently long period of time, and we referred to the 
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/ = 0  t=O 

t=0.2 t = @ 2  

t = 0.4 

= 103 

2 = 0.4 

Bo=106 

FIGURE 3. The effect of acceleration for an initial wavenumber of 19. 

corresponding response as quasi-stable. It was also pointed out that, when the 
effect of acceleration is increased, a zonal harmonic of given order offers a poorer 
approximation to a stable normal mode and the response will be characterized by 
rapid exponential growth. These effects are illustrated in figures 2-4, which depict 
the free surface rlS calculated by the iterative procedure, to terms of O(tZ0), for 
initial wavenumbers of 5, 19 and 39 at Bond numbers of lo3 and lo6. At aninitial 
wavenumber of 5, the rate of unstable growth is very slow, while, a t  an initial 
wavenumber of 19, it is clearly manifest and predictably greater at  the larger 
Bond number. At an initial wavenumber of 39 and a Bond number of lo3, we 
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t=O 1=0 

I = 0.2 I =0.2 

t = 0.4 

B ~ =  1 0 3  

= 0.4 

Bo= 106 

FIGURE 4. The effect of acceleration for an initial wavenumber of 39. 

observe the quasi-stable response that occurs when the wavenumber is sufficiently 
large at a given value of the Bond number. The dependence on Bond number is 
evidenced by the fact that, when the Bond number is increased to 106 at the same 
initial wavenumber, the response is no longer quasi-stable. Further calculations 
indicate that quasi-stable response at  a Bond number of lo6 occurs when the 
initial wavenumber is about 103. One of the most notable aspects of the unstable 
response is that the exponential growth is manifest on the hemispherical surface 
facing away from the direction of acceleration. 

We now address ourselves to the question of describing the response to an 
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initial disturbance of arbitrary form. In  view of the difficulties associated with the 
eigenfunction expansion, a normal mode analysis appears untenable. This would 
seem to suggest, as an alternative, a superposition of solutions obtained by apply- 
ing the iteration procedure to each mode of the initial disturbance, represented 
as an expansion in zonal harmonics. However, an asymptotic approximation 
of closed form, which is in excellent agreement with the iteration procedure, 
has been found. The latter approximation, which is particularly well suited 
to describe the transient response of an initially spherical liquid drop to a 
suddenly applied external aerodynamic flow field, is detailed in the following 
sub-section. 

An asymptotic approximation for large values of the wavenumber 

When the initial surface disturbance PN is of sufficiently high order, the variable 
coefficient appearing in (5 a)  plays an essentially different role in the operator L. 
When the wavenumber N is large, derivatives of @) and $(l) with respect to B are 
large in magnitude, reflecting the effect of high curvature and particle velocity on 
surface tension and inertia forces. The variable coefficient, on the other hand, 
represents the acceleration effect that does not increase with wavenumber. We 
therefore follow Erdelyi (1968) and define the fast and slow variables 6 and 5, 
respectively. In  terms of these new independent variables, we seek a solution of 
the form 

7") = cl(c, t )PN(S) ,  (20 a)  
4"' = C2(c, t)rNpN(a), ( 2 0 b )  

where the oscillations on the fast length scale:& are modulated on the slow length 
scale 5. The differential equation (5a)  is rewritten as 

where the operator appearing in (9a), as well as in the Laplacian (5c) ,  denotes 

a a 
L = - (1-&2) . -  as as* 

The resulting solution is 
Cl = A,  cos NJpN t ,  

c2 = - A ,  N-&pN sin Nip ,  t ,  

where 

is O ( N )  when Bo = O(1) and is O(1) when Bo 2 O ( N 2 ) .  In  order to  check the 
degree of approximation, we substitute the solution (22 )  into (5a-d). Clearly, 
(5b) is satisfied identically. When the leading terms of (5a,c) are scaled to be 
O( l ) ,  it is found that (5a)  is satisfied to O(t2N/Bo&), while (5c) is satisfied to 
O(t2/Npi).  Another measure of the validity of the above approximation is to 
compare the expression for the free surface, 

37 F L M  52 
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with the result of iteration. It has been found that these approximations are in 
very close agreement over a wide range of wavenumbers, Bond numbers and 
values of the time. For example, all the results shown in figures 2-4 were repro- 
duced by (23) to five significant figures at  t = 0.2, and to three significant figures 
at t = 0.4. 

The main feature displayed by (23) is that the drop is subject to unstable 
growth, on the hemispherical surface facing away from the direction of accelera- 
tion, for wavenumbers below a cut-off value N,. For large values of the Bond 
number , 

The rate of exponential growth for the unstable modes is small near cut-off as well 
as for low wavenumbers. The maximum rate of growth occurs at  a wavenumber 
Nmax, 

N, - Bo+O(l) .  124) 

Nm,, - (Bo/3)4 + O( l), (25) 

qsmu - 1 + ~~~,,~, ,exp{0.62Bott} (x < 0). (26) 

or at approximately 0.577 N,, and is given by 

The asymptotic approximation (23) provides a particularly useful means for 
computing the response to an initial disturbance of arbitrary form, as an expan- 
sion in zonal harmonics. Our ultimate goal is to describe the transient response of 
an initially spherical liquid drop to a suddenly applied external aerodynamic flow 
field. Such a circumstance is typified by the encounter between araindrop and the 
shock layer about a supersonic aircraft. We must, therefore, address ourselves to a 
characterization of the initial excitation. As we shall see, the liquid droplet is 
subject to an initial distortion by virtue of the non-uniform distribution of 
surface pressure. Furthermore, the aerodynamic distortion occurs on a time 
scale of smaller order than the time scale appropriate t o  acceleration effects. 
This fact will ultimately allow for the construction of a composite approximation 
for the initial-value problem. In 9 5 we detail the dynamic response of the liquid 
drop to external aerodynamic forces. 

5. The aerodynamic effect 
We begin by reformulating the equations of motion under the assumption that 

the drop is exposed to an external aerodynamic flow field of arbitrary form. It will 
be convenient to measure angular variations from the stagnation point on the 
windward surface by defining 

$ = n - - O  and x=cos$.  (27% b )  

The asymptotic result (23) is simply modified by replacing the variable x with - x. 
We characterize the external gasdynamic pressure distribution go in terms of 
the gas density Po and the initial relative velocity U,: 

so that the external surface pressure ge is 
- 
LPe = *PO u:Po(Fs, @,f). 
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The pressure distribution associated with the external gasdynamic flow field is 
assumed to be suddenly applied at the time f = 0. The initial condition appro- 
priate to a continuously applied pressure is 

- 
$ ( P , O , O )  = 0, 7($,0) = ro. (29) 

We now introduce dimensionless variables, based on a time scale t * ,  appro- 
priate to the aerodynamic effect: 

(30) 

The parameters that appear in the differential equation are: the density ratio 

€* = i j g / i j l  < 1, (31 a)  

a dimensionless acceleration g = gro/U%, (31 b) 

a modified Weber number We* = e*-lWe, ( 3 1 4  

defined as the product of the inverse density ratio, and the Weber number 

We = pgro U%/ri. 

7 = €*+I) + ,*2q(2) + . . . , 
q5* = €*q5(1) + , * 2 p  + . . . , 

g = ,*g(l) + ,*2g@)(t+).  . . , 
gg = gp+e*g(ll * 

g (t ), 
,ye = gp+€*Pp(t*),  

I r = p/ro, 
t* = t^Um/r0, q5* = $/(roUm). 

q;= ?j/ro, ys = Ps/ro = I +y, 

(31 4 
We seek a solution in the form of an expansion for small values of the density 

(32) I 
ratio e*, 

and evaluate all functions at the surface of the drop in terms of a Taylor series 
about the original spherical surface. The perturbed gasdynamic pressure PF)(t*) 
and surface pressure Y‘g)(t*) represent the effect of the deforming liquid surface, 
which alters the initial external flow field. Application of Newton’s law (9a) yields 
the result 

g@) = - 2 lon 9io) sin y? cos y? dy?, (33 )  

where PLO) = Yp(l,y?,t*). (34) 

g = tD/(pU2,nrE) = B * ~ C D ,  ( 3 5 4  

so that g(1) = .O(l). (35b) 

The dimensionless acceleration is related to the conventional drag coefficient 
cD by 

The characteristic time for the aerodynamic effect, 

Taem = ro/Um, 

and the characteristic time for the acceleration effect, 

*accel= ( ~ o / ~ ) ’ ,  
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Taero/Taccel= ~ N e*'gcl'* (36 4 
Therefore, a time of O(1) on the scale of aerodynamic deformation t* represents 
a time of O ( B * ~ )  on the scale t appropriate to instability: 

t = g+t* N e*?%q(1)4t*. (37) 

The Weber number that appears as a parameter in the equations for the aero- 
dynamic deformation is related to the Bond number 

Bo = @&/5> (38) 

which appears as a parameter in the equations appropriate to describe the 
instability, i.e. the effect of acceleration. In  free flight, the relation between these 
parameters is 

Bo = gWe* N s*g(l)We* = q(1)We. (39) 

We now examine the first-order approximation to the aerodynamic deforma- 
tion in terms of the Weber number and drop the time scale t*. 

A linearized theory for the aerodynamic efject 

In  the first approximation, the problem becomes 

--- I [ 2  + L] @) = - [q(Ux + p'k"] H(t*) 
at* We* 

on r = 1, where We* is assumed to be O( l), and 

a a 
L = -(I-x2)- x = cos$, ax ax' 

and H(t*)  is the Heaviside step function. 

with the restriction 

and the initial conditions 

Jrl?l"'dX = 1' q'l'xdx = 0, 
-1 

@)(r, $, t*) = @($, t") = 0. 

We consider the first-order surface pressure to be a steady axisymmetric distribu- 
tion of arbitrary form 

W 

Pio) = C *(2n+ 1) C,P,(cos$), ( 4 1 4  
1 

where P,(x) are the zonal harmonics, and where 
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The first-order acceleration, which appears in (40a), is thus 

581 

( 42) g(l) = - 3c z 1' 

The assumption of a steady first-order surface pressure Yio) is based on the 
estimate of Schlichting ( 1955) that boundary-layer separation on an impulsively 
started sphere is established in the characteristic time 

t* M 0.39, 

while the period of time over which the aerodynamic effect is relevant is 

t* = O(€*d) .  

The latter value is approximately thirty for an air-water drop interaction. 
Comparison of ( 4 0 4  and (1  a)  reveals that the dynamic response on the time 

scale t* is quite different from that on the scale t .  On the latter time scale, the 
effect of acceleration appears in the differential operator as a self-excitation 
7% characteristic of Taylor instability. However, on the time scale t*, the 
acceleration effect.g(l)X appears as a forcing term that does not induce instability. 
Furthermore, to first order, the effect of acceleration is exactly balanced by the 
first mode of the aerodynamic surface pressure. That is, we may express the 
surface pressure distribution as 

gy = - g(l'x + yp, ( 4 3 4  

The f i s t  mode - g(l)x produces the rigid-body acceleration of the spherical drop 
which leads to the unstable amplification of small disturbances, on the time scale 
t ,  detailedin previous sections. The remaining pressure modes P$')serve to distort 
the drop on the time scale t*, and in a co-ordinate system moving with the centre 
of mass. Equation (40a) may therefore be written 

The solution to the above set of equations, 

where ,@ = [n(n - 1) (n + 2)]t/We*, (44c) 

indicates that, when We* = O(1) (We = O(E*) ) ,  or less, the drop will vibrate in 
accord with the (dimensional) characteristic frequencies obtained from the 
normal mode expansion for Bo < I, equation (1 1 c). Our interest here, however, is 
t o  describe the response at moderate and large values of the Bond and Weber 
numbers. We note that, at a fixed value of the densitiy ratio e*, the modal vibra- 
tion amplitudes increase with increasing values of the Weber number. In  the 
limit, as the modified Weber number approaches infinity, (44) reveals that the 
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drop does not vibrate, but undergoes a continuous irreversible distortion that is 
algebraic in time: 

4) 

T p  N ge*t*2 2 4 2 %  + 1)  C,P,(X) + O(e"2) (45) 
2 

as Wz+co. If we consider the initial external gasdynamic field to be the 
symmetric unseparated flow about a sphere, 

(45) yields Burgers's (1958) estimate for the flattening of a raindrop shortly after 
collision with a shock wave 

q = 1 - - e * p  4 z ( X ) t * 2 +  O(e"2). (46b) 

Equation (45) indicates that in the limit W,* -+ co, i.e. as the ratio of surface 
tension to aerodynamic effects approaches zero, the drop will deform con- 
tinuously and irreversibly. This is not a surprising result, but we should inquire 
whether such a response would not occur at a small but non-zero value of this 
ratio. In fact, (45) indicates that, when a drop of given size and fluid properties is 
subjected to increasing values of the relative velocity Urn, the amplitude of the 
oscillations increases at the same (dimensional) values of the modal frequency. 
This behaviour suggests that the drop will cease to vibrate and will break up (i.e. 
deform continuously and irreversibly) owing to nonlinear effects, at  some large but 
finite value of the modified Weber number. An estimate of this ' critical value ' of 
the Weber number, obtained by extending our results to include nonlinear effects, 
will be presented in a separate paper. It is sufficient for our purposes to cite the 
broad experimental evidence which clearly indicates that the value of the Bond 
number, associated with the 'critical' value of the Weber number, is less than 
11.2 and corresponds to absolute stability. 

The existence of a critical Weber number We has been reported by several 
observers, some of whom detailed the effect of viscosity. For the case of water, 
Hanson, Domick & Adams (1963) reported critical values between 3.6 and 7.1, 
Hinze (1948, 1955) reported values between 9 and 13, while Volynski (1948) 
reported values between 7.2 and 7-3. These observers reported that, when the 
critical value of the Weber number is approached from below, by increasing the 
gas velocity relative to a drop of given size and fluid properties, the dynamic 
response is such that the drop does not vibrate, rather, it deforms continuously 
into a ' bag-like ' configuration that subsequently ruptures. Some very clear 
photographs of this deformation have been presented by Hanson et al. (1963), 
Anderson & Wolfe (1965) and Simpkins (1971). It should be emphasized that no 
signs of instability are evident in these photographs. Our conclusion is that, at  the 
lowest level of external gasdynamic flow required to break up the drop, the 
response is due entirely to aerodynamic effects and not to the unstable growth of 
surface waves. Further, a t  large values of the Bond number, where the drop is 
subject to unstable (exponential) response on the time scale t ,  it is simultaneously 
subject to  continuous irreversible (algebraic) deformation on the time scale t*. 
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6. A composite representation 
The results of previous sections indicate that initially, i.e. at values of the time 

t = O(E*)), t* = O(l), 

the effect of acceleration is balanced by the first mode of the aerodynamic pres- 
sure distribution, while the remaining pressure modes deform the drop from its 
initial spherical shape. After a sufficiently long time, however, 

t = O(l) ,  t" = O(€*+), 

the aerodynamic pressure can no longer balance the effect of acceleration and a 
self-excitation characteristic of Taylor instability is manifest. Both (45), which 
describes the initial aerodynamic deformation, and (23), which describes the 
selective amplification up to a cut-off wavenumber of each mode of the initial 
deformation, are asymptotic expansions valid for small, but different, orders of 
the time. These expansions may be combined to form a composite representation 
(Van Dyke 1964). In  terms of the 'outer' variable 

7 = €*it*, 
the composite representation is 

(47) 

which, when rewritten in terms of the 'inner' variable t* and evaluated in the 
limit E* --f 0,  reproduces the expansion of (45). 

The composite expansion (48) provides a means of computing the asymptotic 
response appropriate to an initial surface pressure distribution (43 b) with a finite 
number of modes. In  general, such computations have revealed a ' quasi-stable ' 
breakup regime for values of the Bond number between 11.2 and about 104, where 
the small rate of exponential growth confines the effect of instability to a neigh- 
bourhood of the windward surface as it distorts algebraically in time. Such 
behaviour is manifest in the classical photographs of Engle (1958) for values of 
the Bond number near 103. For values of the Bond number above about lo5, the 
composite expansion exhibits an initial (algebraic) distortion phase followed by a 
sudden (exponential) shattering of the windward surface. Photographs of such 
behaviour at large values of the Bond number have been presented recently by 
Reinecke & Waldman ( 1970), who also present x-radiogram evidence of what they 
term a 'catastrophic mode' of breakup at Bond numbers of lo5 and lo6. Further- 
more, their empirical correlation of a ' breakup time ', which varies as (Bo)-*, is 
consistent with our result (26) for the maximum growth rate of unstable waves. 

At large values of the Bond number, the number of unstable modes (24) be- 
comes very great. For example, at a Bond number of lo5, there are 316 unstable 
modes, the maximum rate of exponential growth occurring with the 183rd mode, 
equation (25). Therefore, the precise configuration of the shattering drop is 
extremely sensitive to very small variations in the pressure distribution. None- 
theless, it is instructive to display some of the possible realizations arising from 
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FIGURE 5. Two approximations to a reference surface pressure distribution 9;'. 

the interference of unstable modes while emphasizing that such realizations are 
only representative in a statistical sense. 

We consider, for the purpose of illustration, the reference pressure distribution 
Y$" shown in figure 5 and given by a piecewise analytic function which is 
continuous through all derivatives, except at @ = 59" and 61", where the function 
is continuous through the second derivative. The intent here is to introduce an 
undetectable perturbation in the pressure distribution, namely, a large variation 
in the second derivative between 59" and 61". The effect of such a perturbation, 
in the presence of an otherwise smooth pressure distribution, will be displayed by 
means of the composite expansion. 
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T =0.7 
~ 0 = 1 0 5  g‘”=t 

FIGURE 6 .  An example of the dynamic response at a Bond number of 105. 

In  order to demonstrate the sensitivity of the unstable surface shape to 
variations in the surface pressure distribution, we consider two approximations 
to the reference distribution based on the partial sum of 80 and 316 Fourier 
coefficients, respectively, at a Bond number of lo5. As shown in figure 5, both 
partial sums approximate the given function to one part in lo5 except near 60°, as 
one would expect. Figures 6 and 7 show the profound effect of differences between 
high modal coefficients even when the pressure distributions under consideration 
are identical to four decimal places. In  figure 6, all the modal coefficients above 80 
have been set identically to zero, and the drop surface manifests considerable 
structure. In figure 7, all 316 unstable modes have been summed and may be seen 
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~ ~ 0 . 7  ~ = 0 . 9  
BO= 105 

g"'=$ 

FIGURE 7. An example of the dynamic response a t  a Bond number of 105. 

to interfere constructively so as to produce a smooth surface except at 60°, where 
the reference pressure distribution was intentionally perturbed. Figure 7 bears 
considerable resemblance to the unstable 'fingers ' photographed a t  a Bond 
number of lo5 by Reinecke & Waldman (1970), and reproduced, with their 
kind permission, in figure 8 (plate 1). It should be emphasized that the pressure 
distribution appropriate to figure 8 is not known and the comparison with 
figure 7 is qucllitative. 
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7. Conclusions 
We summarize our results by reference to figure 9, which depicts the regimes of 

the dynamic response of a drop to a suddenly applied pressure distribution in 
terms of the order of the Weber and Bond numbers and as a function of the time 
t* appropriate to the aerodynamic distortion. At values of We = O(E*) and below, 
the drop vibrates for all time. Above the critical value of the Weber number, 
the response is not vibratory, rather, the drop breaks up by deforming alge- 
braically in time owing to nonlinear effects. The value of the Bond number 
associated with the critical Weber number is O( 1) and is less than 11.2. Therefore, 
for values of the Weber number slightly above the critical value, the drop is stable 
to small disturbances (stability refers only to the absence of exponentially 
growing surface waves) and the breakup is induced by aerodynamic forces. 
Above the lowest critical value of the Bond number, 11.2, the drop is un- 
stable to small disturbances of arbitrary form. However, until the Bond 
number reaches a rather large value, say lo5, the rate of growth of the unstable 
modes is rather small compared with the aerodynamic deformation. We there- 
fore defhe a ‘ quasi-stable ’ regime in which the deformation is aerodynamically 
induced (algebraic in time), and the effects of acceleration are manifest as waves 
on the windward surface. At this point, it  is appropriate to mention an effect 
which is relevant to the breakup of liquid drops and which has not been con- 
sidered in this study. A survey of the available experimental data for shock 
wave-water drop interaction indicates that, above a Bond number of about 
lo2, liquid is removed from the drop and is visible in the wake region as a 
spray. At lower values of the relative velocity, there appears to be little or no 
mass loss and the breakup of the drop results from an irreversible ‘bag-type’ 
deformation. In  the so-called ‘quasi-stable’ region, lo2 < Bo < lo5, the defor- 
mation is essentially algebraic in time and the mass removal appears to contribute 
significantly to the disintegration of the drop. A boundary-layer ‘stripping’ 
model has been presented by Ranger & Nicholls (1969), in order to account for 
such mass removal. However, an experimental ‘stripping mode ’ correlation, pre- 
sented by Reinecke & Waldman (1970)) indicates that the mass loss is occurring 
a t  a much higher rate than would be accounted for by boundary-layer stripping 
alone. This discrepancy has been discussed by Collins & Charwat (1971), who 
have presented a semi-empirical model for intermittent disintegration deriving 
from capillary waves. However, their assumption that an initially spherical drop 
deforms as a spherical cap is not supported by our computations involving both 
aerodynamic and acceleration effects. 

At large values of the Bond number, O( lo5) and above, the effects of accelera- 
tion (exponential in time) appear at the characteristic time t* = O(e*d) ,  after 
which they dominate the breakup by shattering the drop from the windward 
surface. The detailed shape of the free surface is described by the selective ampli- 
fication, up to cut-off, of the initial distortion induced by the aerodynamic 
pressure distribution. The cut-off wavenumber is approximately Boi, which 
implies an extreme sensitivity to the surface pressure distribution. These 
conclusions are supported by the recent experimental results of Reinecke & 
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FIGURE 9. Regimes of the dynamic response. 

Waldman. At Bond numbers above lo5, they report, concurrent with their 
observation of “the onset of large instabilities”, a severe departure from the 
stripping mode, which they describe as “an extremely abrupt, catastrophic 
disintegration of the drop”. They proceed to define a “catastrophic mode” of 
breakup, the dominant effect of which “is seen to be the rapid growth of surface 
waves on the windward face of the drop”. Further, their empirical correlation of 
the breakup time in this regime varies with Bod,  which is in accord with the 
maximum rate of growth (26) of unstable acceleration waves. It therefore appears 
that, above the quasi-stable regime, Bo > lo5, the effect of acceleration controls 
the breakup of liquid drops through unstable shattering of the windward 
surface. 

Appendix 
The kinematic condition at  the free surface is approximated by 

where, for r 6 T o )  v 2 p  = 0. (A 2) 
The hydrodynamic pressure within the drop is given by 

whence, at the surface ;i. = FS, 
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The pressure difference across the surface of the drop is given by 

where a is the surface tension coefficient. The hydrodynamic and surface tension 
stresses are related to the externally applied pressure at  the surface 

ge = gy + egp’  (A 4) 

through (2c). Application of (2c) to O( 1) yields 

- 23 

YO 
~p = - p l g ~ o  cos e - - , 

and t o  O ( E )  gives 

The unit normal vector a t  the surface of the droplet is given by 

e, - E7p)eg + O(+ (A 7) 
V F  n=-= 

l V F l  

where the subscript 6 refers to differentiation with respect to that variable. The 
differential surface area, to O(E) ,  is 

Application of ( 2 4  to O(1) yields 

= 2n/:WpFgk cos28sin&h9 

= +F;@jk = M g .  

Under the assumption of uniform acceleration, we require that 

(A 10) 
When the constraint ( 2 b )  is imposed, the first term of (A 10) becomes 
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Application of constraint equations (2a, b )  reduces the second term of (A 10) to 

We select a form for @)(o, f), namely, 

L F ~  = %pig cOs e, 
whence, by (A 10-13), 

where P,(cos 6 )  denotes the zonal harmonic of order n. 
In  summary, the governing equations, to O(E) ,  are 

on r = Po, where 

and 
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FIGURE 8. Unstable shattering of the windward surface. 
Reproduced from Reinecke & Waldman (1970). 
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